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Abstract
We study how weak disorder affects the growth of the Fibonacci series. We
introduce a family of stochastic sequences that grow by the normal Fibonacci
recursion with probability 1 − ε, but follow a different recursion rule with a
small probability ε. We focus on the weak disorder limit and obtain the
Lyapunov exponent that characterizes the typical growth of the sequence
elements, using perturbation theory. The limiting distribution for the ratio
of consecutive sequence elements is obtained as well. A number of variations
to the basic Fibonacci recursion including shift, doubling and copying are
considered.

PACS numbers: 02.50.−r, 05.40.−a

(Some figures in this article are in colour only in the electronic version)

The Fibonacci integer sequence {1, 1, 2, 3, 5, 8, . . .} has been studied extensively in number
theory, applied mathematics, physics, computer science and biology [1].3 Fibonacci numbers
are ubiquitous in nature: they govern branching in trees, spiral patterns in shells and the
arrangement of seeds in sunflowers [3–6].

The Fibonacci sequence, defined via the recursion relation

Fn+1 = Fn + Fn−1 (1)

with F0 = 0 and F1 = 1, is deterministic. However, many patterns in nature are not
perfect. For example, spiral patterns in sunflowers, where Fibonacci numbers as high as 144
are observed, may very well be disordered. An empirical study of sunflowers observes the
normal sequence {1, 1, 2, 3, 5, . . .} with a frequency of 95%, but altered sequences such as
{2, 3, 5, 7, . . .} and {1, 3, 4, . . .} are also observed with a small frequency [4].

Motivated by this empirical observation, we study disorder in Fibonacci sequences.
Specifically, we introduce the following stochastic sequence. We assume that the normal

3 http://www.ee.surrey.ac.uk/Personal/R.Knott/ gives a huge amount of information on Fibonacci numbers.
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Fibonacci rule (1) is followed most of the time, but that with a small probability, ε � 1, an
‘erroneous’ recursion xn+1 = xn + xn−2, involving an index shift, is followed. The stochastic
recursion rule is therefore

xn+1 =
{
xn + xn−1 prob 1 − ε;
xn + xn−2 prob ε.

(2)

The initial elements are always x0 = 0 and x1 = x2 = 1.
Let us first recall a few useful facts on the Fibonacci sequence, corresponding to the

limiting case ε = 0. The series elements are given by

Fn = λn − (−λ)−n

λ + λ−1
(3)

with the golden ratio λ = 1+
√

5
2 . The series elements grow exponentially with n, Fn ∼ λn.

Substituting this form into the recursion (1), the golden ratio satisfies λ2 = λ + 1, and this
allows us to express polynomials of arbitrary degree in λ as linear functions of λ. Moreover,
the ratio between two successive series elements, rn = xn/xn−1, approaches the golden ratio
rn → λ, as n → ∞.

Our goal is to elucidate the typical growth of the sequence elements

xn ∼ eβn (4)

with β ≡ β(ε) being the Lyapunov exponent. For example, for the random Fibonacci series
xn = xn−1 ± xn−2 where addition and subtraction are chosen with equal probabilities, the
Lyapunov exponent is β ≈ 0.123 975 [7–11]. In our case, however, the recursion rules (2)
represent a gentle departure from the original Fibonacci rule (1), and thus, we expect a small
change in the Lyapunov exponent. We focus on the weak disorder limit, ε → 0, and use
perturbation theory to show that the Lyapunov exponent varies linearly with the disorder
strength

β(ε) = β0 + β1ε + · · · (5)

with β0 = ln λ.
In general, the average behaviour 〈xn〉 can be obtained analytically. From the sequence

definition (2), the average satisfies the recursion relation

〈xn+1〉 = 〈xn〉 + (1 − ε)〈xn−1〉 + ε〈xn−2〉 (6)

with 〈x0〉 = 0 and 〈x1〉 = 〈x2〉 = 1. This linear relation implies the exponential growth
〈xn〉 ∼ µn with the growth factor µ being the largest root of the third-order polynomial

µ3 = µ2 + (1 − ε)µ + ε. (7)

Differentiating this equation with respect to ε and setting ε = 0, we find dµ/dε|ε=0, and
thus, for small ε we have µ(ε) = λ − λ−1

λ+2 ε. To compare with the growth of the typical
sequence (4), it is useful to write 〈xn〉 ∼ eγ n with γ = ln µ. To first order in the disorder
strength ε,

γ (ε) = γ0 + γ1ε + · · · (8)

with γ0 = β0 and γ1 = 1−λ
λ(λ+2)

.
To address the typical behaviour, we introduce the ratio between two successive elements

in the sequence, rn = xn/xn−1. The random recursion rule (2) implies that this ratio satisfies
the random map:

rn+1 =
{

1 + 1
rn

prob 1 − ε;
1 + 1

rn
· 1

rn−1
prob ε.

(9)
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When there is no disorder, ε = 0, the ratio approaches the golden number, rn → λ

as n → ∞. Thus, as the number of iterations of the normal map (9) grows indefinitely,
the distribution of the ratio approaches a delta function centred at the golden ratio,
P(r) → δ(r − λ).

Generally, when ε > 0, the distribution P(r) has a richer structure, as shown below. The
Lyapunov exponent can be conveniently expressed in terms of P(r). Indeed, each sequence
element is given by the product

xn =
n∏

j=2

rj . (10)

With the exponential growth (4), the Lyapunov exponent simply equals the expected value of
the logarithm of the ratio:

β = 〈ln r〉 =
∫

drP (r) ln r. (11)

At weak disorder, with a small probability ε, an error occurs. That is, the map
rn+1 = 1 + 1/(rnrn−1) is implemented. As long as no errors occur, the ratio will essentially
be equal to λ. Then, when an error occurs, the ratio reduces to 1 + λ−2. Since the expected
number of iterations before another error occurs, ε−1, is very large, the ratio again quickly
approaches λ. This cycle continues ad infinitum.

To characterize this process, we should understand how an error evolves under the random
map (9). Thus, we consider the following scenario: (1) initially, the ratio equals the golden
number ρ0 = λ, (2) an error occurs at the very first step and (3) no further errors occur. Let ρn

be the value of the ratio after n iterations. Then ρ1 = 1 +λ−2, and using the relation λ2 = λ+ 1
we have ρ1 = 2+λ

1+λ
. At further iterations, the ratio follows the normal map ρn+1 = 1 + 1/ρn,

and therefore,

ρ1 = 2 + λ

1 + λ
, ρ2 = 3 + 2λ

2 + λ
, ρ3 = 5 + 3λ

3 + 2λ
.

By induction, at the nth iteration, the ratio can be expressed in terms of the Fibonacci numbers

ρn = Fn+2 + Fn+1λ

Fn+1 + Fnλ
. (12)

This series alternates around λ: ρ2n+1 < λ while ρ2n > λ, but both the odd and the even
sub-series quickly converge to golden ratio, ρn → λ as n → ∞.

This analysis characterizes how a single error affects the ratio. To first order in the
disorder strength ε, the probability that the value ρn is observed equals ε(1 − ε)n−1, reflecting
the probability that one error is made, and then no errors are made in the following n − 1
iterations. Our first result is the distribution P(r) for the ratio to have the value r,

P(r) → ε

∞∑
n=1

(1 − ε)n−1δ(r − ρn), (13)

in the weak disorder limit ε → 0.
The calculation of the first-order correction to the Lyapunov exponent (5) is now

straightforward. Substituting the leading behaviour in the weak disorder limit (13) into
the general formula (11) for the Lyapunov exponent, we obtain

λ → ε
∑
n=1

(1 − ε)n−1 ln ρn. (14)



L304 Letter to the Editor

The sum is evaluated as follows:

λ → ε

∞∑
n=1

(1 − ε)n−1 ln λ + ε

∞∑
n=1

(1 − ε)n−1 ln
ρn

λ
.

Performing the summation in the first term, we verify that β0 = ln λ. Keeping only the terms
proportional to ε in the second sum gives the leading correction in the perturbation expansion
of the Lyapunov exponent (5):

β1 =
∞∑

n=1

ln
ρn

λ
. (15)

To perform this summation, we substitute expression (12), and replace the upper limit with a
large but finite cut-off N, and then evaluate the N → ∞ limit as follows:

β1 = lim
N→∞

ln
1

λN

FN+2 + FN+1λ

1 + λ
= ln

2λ2

(λ + 1)(λ + λ−1)
,

where in the second expression we used equation (3). Using the equality λ2 = λ+ 1, we arrive
at our second main result

β1 = ln
2λ

λ + 2
. (16)

This correction is very close, but not identical, to that corresponding to the average
behaviour (8). As the difference β1 − γ1 ≈ −0.005 998 97 is negative, the typical growth
is slower than the average growth. This manifests the multiscaling behaviour that has been
reported in other stochastic sequences [12]. Generally, there is a multiscaling spectrum ζm

that characterizes the growth of the mth moment,
〈
xm

n

〉1/m ∼ exp(nζm). However, there is
no obvious relation between the Lyapunov exponent β and the multiscaling spectrum ζm,
e.g., β 
= γ ≡ ζ1.

We performed Monte Carlo simulations to verify these theoretical predictions. In
the simulations, we followed the stochastic evolution of the variable r. This approach is
advantageous for computation because the ratios are bounded, in contrast to the explosive
growth in the sequence elements. The results presented here correspond to a single Monte
Carlo run with 109 iterations.

There is a distinct but subtle difference between the typical and the average growth as
characterized by β and γ , respectively (figure 1). The two coincide in the limiting cases ε = 0
and ε = 1,4 and the discrepancy is maximal, a mere 0.2%, at the midpoint ε = 1/2.

The numerical simulations show unambiguously that as the number of iterations grows
indefinitely, the ratio distribution approaches a stationary distribution P(r). In figure 2, we
display the cumulative distribution G(r) = ∫ r

0 dr ′P(r ′).
The stationary distribution has a compact support, rmin < r < rmax. Indeed, the definition

of the map (9) implies the obvious bounds rmin > 1 and rmax < 2. The values rmin = (1+
√

3)/2
and rmax = √

3, consistent with the numerical simulations results, are obtained from the
following relations:

rmax = 1 +
1

rmin
, (17a)

rmin = 1 +
1

1 + rmax
. (17b)

4 For ε = 0, 1 the growth is of course deterministic and µ(0) = eβ(0) = λ and µ(1) = eβ(1) = 1.465 571 232.
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Figure 1. The weak disorder limit. Shown is the Lyapunov exponent β versus the disorder
strength ε. Also shown for reference are the parameter γ characterizing the average growth and
the perturbation theory result (5) with (16).
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Figure 2. The cumulative distribution G(r) versus the ratio r.

The first relation (17a) follows from the normal Fibonacci recurrence rn+1 = 1 + 1/rn. The
second relation (17b) follows from the altered recurrence rn+1 = 1 + 1/(rnrn−1) combined
with max(rnrn−1) = 1 + max(rn−1) = 1 + rmax that follows from the normal recursion
rn+1 = 1 + 1/rn.

The distribution P(r) consists of a set of delta functions, and therefore, the cumulative
distribution G(r) has a devil’s staircase structure with infinitely many gaps. Generally, there
is a large gap in the interval 1/2 < r < 1+1/

√
3. This gap arises since the map (9) transforms

(rmin, rmax) into the union of two subintervals, (rmin, 3/2) and (1+1/rmax, rmax). The bounding
point 3/2 is obtained using reasoning similar to that used in the previous paragraph. Restricting
the map to the above subintervals, one finds that they are transformed into the union of four
smaller subintervals, etc. Hence, the support of the invariant distribution P(r) is a Cantor-like
fractal set and the cumulative distribution therefore has a devil’s staircase structure with an
uncountable number of singularities (figure 2).

Thus far, we have addressed a specific modification of the Fibonacci recurrence, namely,
the one involving the index shift xn+1 = xn + xn−2. But there are of course several other,
equally natural, modifications of the basic recursion rule. For example, one may simply copy
the last element xn+1 = xn or, alternatively, double it xn+1 = xn + xn. These two models are
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analysed along the same lines. For simplicity, we address the latter case where the recursion
relation is

xn+1 =
{
xn + xn−1 prob 1 − ε,

xn + xn prob ε; (18)

with the initial elements x1 = x2 = 1. The corresponding random map is

rn+1 =
{

1 + 1
rn

prob 1 − ε;
2 prob ε.

(19)

In contrast to (9), when an error occurs, the ratio r = 2 is independent of the previous element.
Thus, error events effectively reset the process anew. As a result, this stochastic process is
analytically tractable.

To characterize how an error propagates, we start with ρ1 = 2 and use the recursion
ρn+1 = 1 + 1/ρn to obtain the first few terms ρ2 = 3/2, ρ3 = 5/3 and ρ4 = 8/5. In general,

ρn = Fn+2

Fn+1
. (20)

The ratio attains this value, r = ρn, when an error is followed by n−1 normal recursion steps,
and this occurs with probability ε(1 − ε)n−1. Thus, the probability distribution of the ratio is

P(r) = ε

∞∑
n=1

(1 − ε)n−1δ (r − ρn) (21)

with ρn given by (20). In contrast to the limiting distribution (13), this result is now exact,
because the history prior to the most recent error event is irrelevant. The distribution now
has a countable set of singularities located at the ratios ρn of successive Fibonacci numbers.
These singularities ‘bunch’ near the golden ratio λ.

Substituting the probability distribution (21) into the Lyapunov formula (11) yields

β = ε

∞∑
n=1

(1 − ε)n−1 ln
Fn+2

Fn+1
. (22)

Again, the typical growth is slower than the average growth, as for example, β(1/2) ≈
0.571 357 while γ (1/2) ≈ 0.577 049.5 The exact expression (22) can be, in principle,
expanded as a power series in the disorder strength ε, namely β = ∑

n�0 βnε
n with βn

characterizing the effect of n errors. Of course, β0 = ln λ. The lowest order correction, which
can be obtained either from equation (22) or from equation (15), is given by

β1 = ln
2λ + 1

λ + 2
. (23)

One can also extract the next correction from equation (22); the result is β2 = ∑
m�0 ln[1 +

(−1)mλ−2m−6].
In summary, we introduced a class of random Fibonacci sequences where with a fixed

probability the classic rule is followed, but otherwise, an alternate recursion occurs. We
analysed the weak disorder limit and obtained the limiting distribution for the ratio of
consecutive sequence elements as well as the Lyapunov exponent. We found that the typical
growth is slower than the average growth. We also showed that the cumulative distribution
of the ratio of consecutive elements has a devil’s staircase structure. An exact solution for
particularly simple alterations of the recursion rule was obtained as well.

The above results raise a number of questions: can the ratio distribution and the Lyapunov
exponent be obtained analytically in general? What are the locations of the singularities

5 The parameter γ = ln µ is obtained from µ2 = (1 + ε)µ + (1 − ε).
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underlying the distribution of the ratio? What is the probability that a given integer belongs
to the random Fibonacci sequence?

We have focused on the average and the typical sequence growth, but further information
is encoded in fluctuations with respect to the typical behaviour. Related studies on disordered
systems suggest that such fluctuations should obey Gaussian statistics [12] and our preliminary
numerical simulations support this. The corresponding variance may be calculated using
perturbation theory in the weak disorder limit.
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